國立政治大學 應用數學系 100 學年度第 一 學期 學科 考試試題

NATIONAL.	CHENGCHI UNIVERSITY EXAMINATION FORM	
	. V . I I I')) V V Y V X : I I I I V I I V I I V I I V (X) X I I I I V X X X I V I I I V X I X I V I V	

Page /Total

\						g	
考試科目	實變函數論	開課系級 Dept, &	研究所	日 期 Date,	100 平 5 月 15 日	試題編號 Course	
Course	貝及四級咖	Class	7 7077	Period	上午 9:00~12:00	No.	Ĺ
本試卷共存	有6個題目,						

碩士班: 請選5題作答,每題20分,請在答案卷最前面註明所選的5題,否則依學生作答之前5題計分。 博士班:6題全做答,每題17分,超過100分則以100分計。

1. Let

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

- (a) Does the integral $\int_{-\infty}^{\infty} f(x) dx$ exist as an improper Riemann integral?
- (b) Is f(x) Lebesgue integrable over $(-\infty, \infty)$? Prove your answer!
- 2. Let p(x) be a polynomial function given by $p(x) = \sum_{i=1}^k a_i x^i$.
 - (a) Show that for any positive $\,y\,$ and natural number $\,n,\,\,|p(y/n)|\leq \sum_{i=1}^k|a_i|y^i.$
 - (b) Show that

$$n\int_0^\infty p(x)e^{-nx}dx\to p(0)\quad \text{ as } n\to\infty.$$

- 3. Let X be a normed linear space. Show that the set X^* of all bounded linear functionals on X is a Banach space.
- 4. Let $f \in L^1(\mathbb{R})$ be a uniformly continuous function on \mathbb{R} . Show that $\lim_{|x| \to \infty} f(x) = 0.$
- 5. Suppose that $\{f_n\}$ is a sequence of nonnegative integrable functions such that $f_n \to f$ a.e., with f integrable, and $\int_{\mathbb{R}} f_n \to \int_{\mathbb{R}} f$. Prove that $\int_{\mathbb{R}} |f_n f| \to 0$.
- 6. Suppose that $f \in L^1(\mathbb{R})$ is a absolutely continuous function on \mathbb{R} . Show that if in addition

$$\lim_{t \to 0+} \int_{\mathbb{R}} \left| \frac{f(x+t) - f(x)}{t} \right| dx = 0$$

Then $f \equiv 0$.

國立政治大學 應用數學系 100 學年度第 一 學期 學科 考試試題

NATIO 考試科目 Course	NAL CHENGCHI UN 數理統計	IVERSITY 開課系級 Dept, & Class	TEXAMIN. 研究所	ATION FOR 日期 Date, Period	RM Pa 100年9月19日 上午9:00~12:00	ge / /Total 上 試題編號 Course No.	
碩士班:請	6個題目, 選5題作答,每題20分 題全做答,每題17分,表			選的5題,否	則依學生作答之前	「5題計分。	
<u> </u>	To ea	rn your cr	edits, you	must sho	w your work.	·	
	You don't have to	use the calc	culator. Ho	wever, you 1	nay use the info	ormation at	:
					istical table.		
	1. Let X ₁ , X ₂ , X ₃ bè						:
	$U_1=X_1+X_2+X_3$, $U_2=X_1$ (b) Find the margina						<u> </u>
	and U_3 .						
	2. A prisoner is in a	cell with fou	r doors. He	chooses a do	or at random (ea	ach with	:
	probability 1/4). The	first door le	ads to a tun	nel which lea	ads to freedom in	n one day.	:
	The second door lead	ls to a long t	unnel which	leads to fre	edom in three da	ys. The	
	third tunnel is a trap						
	also a trap which lead					•	
	gets back to the cell,						
	with probability 1/4) time.) Find the expec				aoor ne chose th	e previous	:
	✓ 不需使用簡易計算			escapes.	(二語・中類・学師が	7選,謝謝!	المر

國立政治大學 應用數學系 100 學年度第 - 學期 學科 考試試題

NATIONAL CHENGCHI	UNIVERSITY EXAMINATION FORM	

Page 2_/Total 2_

学試科目 Course	數	理統言	† -	開課系級 Dept, &	研究	所 D	ate,	100 年 9 上午 9:00	73 17 14	試題編號 Course	CONTROL CONTRO
	百6個題目	,		Class	<u> </u>		Period			No.	
[士班: 言	青選 5 題作	答,每題		請在答案卷 過100分則			5題,否	則依學生化	作答之前:	5題計分。	,
	3. Sup	3. Suppose we observe X_i , $i=1,, n$, independent, with $X_i \sim E(i\theta), \ \theta > 0$, that is,									
	$f(x_i; \theta)$	$f(x_i; \theta) = (i\theta)^{-1} \exp(\frac{-x_i}{i\theta}), \theta > 0.$ (a) Find the MLE $T_n(X_1, X_2,, X_n)$ of θ . (b) Find the									
	asymp	totical dis	stributi	on of T _n as	n goes t	o infinit	ry.				
	4. Stat	e and pro	ve the l	Neyman-P	earson T	heorem.					
	5. Let	$X_1, X_2,$	X_n be	independe	ent, and I	et X _i be	normal	distributio	on with 1	mean iθ	. i
	and va	riance 1.	Find th	e uniforml	ly most p	owerful	(UMP)	size-0.02	5 test tha	at $\theta = 3$	
	agains	t θ < 3 v	vhen n=	=3.							
	6. Let	X_1 and X_2	2 be two	o independ	lent and i	dentical	l Bernoul	lli distrib	utions w	rith mean	
	θ. That	is, X _i ~]	Β(1, θ)	for i=1 an	ıd 2. Con	sider tes	sting θ=(0.5 agains	st θ>0.5	. Let	· ;
· · · · · · · · · · · · · · · · · · ·	$\Phi(X_1, X_2)$	X_2) be the	ie nonr	andomized	l test whi	ch rejec	ts the nu	ll hypoth	esis if X	1=1. (a)	<u> </u>
	Show that $T=X_1+X_2$ is a sufficient statistic. (b) Find $\Phi^*(T)=E\langle\Phi(X_1,X_2) T\rangle$. (c)										
	Which	test (Φ(Σ	(X_1, X_2)	or Φ*(T))) has moi	e powe	r? Why?			:	
	Note:				· .				-		
	Х	6	7	8	10	11	12	13	14	15	
	\sqrt{x}	2.45	2.65	2.83	3.16	3.32	3.46	. 3.61	3.74	3.87	1 .
			•	3			• •				·
文考試:	♂ 不需	使用簡易	計算機	銭,口 使用	簡易計	算機 計	· .	一請出題	老師勾達	選,謝謝	:

國立政治大學 應用數學系 100 學年度 第一學期 學科 考試試題

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

Page 1/Total 1

考試科目	組合學	開課系級 Dept, & Class	研究所	Date,	100年09月19日 上午09:00~12:00		,
Course		Dopt, & Class		Period	321 05.00 12.00	Course 110.	
the second name of the last of							

本試養共有6個題目。

碩士班:請選5題作答,每題20分,請在答案卷最前面註明所選的5題,否則依學生作答之前5題計分。

博士班:6題全做答,每題 17分,超過 100分則以 100分計。

★ Show *all* your work for credits!

1. Suppose α is an irrational real number. Then there are infinitely many rational numbers p/q such that

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}.$$

- 2. We say that a rooted tree is *strictly binary* if every parent vertex has exactly two children. How many strictly binary trees are there with *k* parent vertices? (Do not take symmetry into account: If two trees are mirror images of one another, count both configurations.)
- 3. If $2 \le p' \le p$ and $2 \le q' \le q$, then prove that $R(p', q') \le R(p, q)$ where $R(\cdot, \cdot)$ is the Ramsey number associated with integers. Also, prove that equality holds if and only if p' = p and q' = q.
- 4. A cyclobutane is a hydrocarbon constructed of 4 carbon atoms arranged cyclically with 2 hydrogen atoms attached to each carbon, as illustrated in the following:

- (a) How many isomers can be obtained by replacing 2 hydrogens with nitrogen and 3 with oxygen?
- (b) Find the number of isomers with 3 hydrogens.
- 5. Let n > 1 be an integer. A *conference matrix* M of order n is an $n \times n$ matrix with 0's on the diagonal and +1 or -1 in all other positions, and with the property

$$MM^{t-}=(n-1)I_n$$

where I_n is the identity matrix of order n and M^t is the transpose of M.

- (a) Show that n must be even.
- (b) Show that permuting rows and columns and multiplying rows and columns by -1, we can obtain a matrix that is symmetric if $n \equiv 2 \mod 4$ and antisymmetric if $n \equiv 0 \mod 4$.
- 6. Let $GF(4) = \{0, 1, \omega, \overline{\omega}\}$, where $\omega^3 = 1$ and $\overline{\omega} = \omega^2$.
 - (a) Give a parity-check matrix for the Hamming single error-correcting code C of length 5 over GF(4).
 - (b) Give a generator matrix for C.
 - (c) What is the minimum weight of C? Give reasons.

In the Problem 4, you must graphically visualize the cyclobutane in the 3 dimensional space.

國立政治大學 應用數學系 100 學年度第 一 學期

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

111222	THE CHANGE OF		. 11282817831111	XXXVIII VI	1 6	go /iotat	
考試科目 Course	微分方程式	開課系級 Dept, & Class	研究所	日期 Date, Period	100 年 9 月 19 日 上午 9:00~12:00	試題編號 Course No.	

本試卷共有6個題目,

碩士班:請選5題作答,每題20分,請在答案卷最前面註明所選的5題,否則依學生作答之前5題計分。 博士班:6題全做答,每題17分,超過100分則以100分計。

1. Prove Gronwall's Lemma: Suppose that g(t) is a nonnegative continuous function and

$$g(t) \le C + K \int_0^t g(s) ds$$

for all $t \in [0, a]$, where C and K are positive constants. Show that $g(t) \leq Ce^{Kt}$, for all $t \in [0,a]$.

2. Prove that the initial-value problem

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^{\mathrm{sint}}y, \qquad y(0) = y_0$$

with y_0 given, has a unique solution on $[0, \infty)$.

3. Show that the system

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x(\lambda - (x^2 + (1 + \epsilon^2)y^2)) + \omega y,$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y(\lambda - (x^2 + (1 + \epsilon^2)y^2)) - \omega x$$

has a limit cycle for $\lambda, \epsilon > 0$.

4. Construct a Lyapunov function to determine whether the trivial solution

$$x_1' = -x_1 + 2x_2^2$$

 $x' = -x_1 + x_2^2$

$$x_2' = -x_2 + x_1^2$$

is stable, asymptotically stable or unstable.

國立政治大學 應用數學系 100 學年度第 一 學期 學科 考試試題

	· ·			
NATIONAL.	CHENCCHI III	VIVERSITY	EXAMINAT	TON FORM

Page /Total

LIZZIO	TIME CHENTOCHE OF		. 11282317831 12.		14	ge / Total		
考試科目	微分方程式	開課系級 Dept, &	研究所	日 期 Date,	100年9月19日	Courage		
Course		Class	· · · · · · · · · · · · · · · · · · ·	Period	上午 9:00~12:00	No.		
本試卷共有 6 個題目,								
碩士班・言	青選5題作答,每題20分,	請在答案卷	最前面註明所:	選的 5 題,否	則依學生作答之前	「5題計分。		

- 碩士班:請選5題作答,每題 20 分,請在答案卷最前面註明所選的 5題,否則依學生作答之前 5題計分。 博士班:6題全做答,每題 17 分,超過 100 分則以 100 分計。
 - 5. Let a(t) and b(t) be continuous and periodic of period ω . Let φ_1 and φ_2 be solutions of x'' + a(t)x' + b(t)x = 0 such that $\varphi_1(0) = 1$, $\varphi_1'(0) = 0$, $\varphi_2(0) = 0$ and $\varphi_2'(0) = 1$. Show that the multipliers are solutions of $\lambda^2 A\lambda + B = 0$, where $A = \varphi_1(\omega) + \varphi_2'(\omega)$ and $B = \exp[-\int_0^\omega a(t) \, dt]$.
 - 6. Determine the type of stability of the critical point (0,0) of each of the following systems and sketch the phase portraits.

(a)
$$\begin{cases} \frac{dx}{dt} = 7x + y \\ \frac{dy}{dt} = -3x + 4y \end{cases}$$
 (b)
$$\begin{cases} \frac{dx}{dt} = -2x - 5y \\ \frac{dy}{dt} = 2x + y \end{cases}$$